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AFTERBODY PRESSURES OF A MISSILE MODEL

HAVING SINGLE AND MULTIPLE JETS

By Nickolai Charczenko and Clyde Hayes

SUMMARY

An investigation was made to determine pressure distribution on the base and

the afterbody of a missile configuration with and without jet flow and incorpo-

rating one_ tw% three_ four_ and six nozzles. In addition_ skirts of various

types and lengths over the base of the model were investigated. The tests were

performed at Mach numbers of 2.30_ 2.95, 4.00, and 4.65 at angles of attack and

sideslip of 0°.

For one- and two-nozzle configurations, or for a flared-afterbody configura-

tion_ changes in the jet pressure ratio had little effect on afterbody pressure

coefficient at any of the test Mach numbers. Cylindrical afterbody configura-

tions with more than two nozzles, however_ led to an increase in pressure coeffi-

cient over the rearmost part of the afterbody at the higher jet pressure ratios.

Nozzle arrangements enclosing portions of the base area led to large positive

values of base pressure coefficient at high values of jet pressure ratio. This

result was caused by jet boundary interaction_ which forced exhaust gases into

the base and hence radially outward between the nozzles. Skirt length or perfora-

tion, such as was used in these tests_ had little or no effect on the base pres-

sure coefficient 3 although flaring the skirt resulted in reduced base pressures

at all test Mach numbers for a given jet pressure ralio.

INTRODUCTION

The problem of determining the pressure distribution on the afterbody and on

the base of a missile is of considerable practical interest, inasmuch as_ for high

jet pressure ratios_ a separation of the flow near the base of a missile can

affect the control effectiveness of fins or of a flare located in the base region.

Furthermore, the base drag can amount to a large portion of the total drag of the

vehicle. In additionj at high altitudes, missiles having a cluster of two or

more nozzles can encounter high heating rates at the base as a result of the

reverse flow of gases entrapped between the nozzles (for example, refs. l, 2_

and 3).



To obtain a theoretical solution of base-pressure distributions for bodies

of revolution at supersonic speeds is difficult, even without the jet flow; with

the jet flow the problem becomes further complicated. For this reason numerous

investigations have been performed to obtain experimental data to show the effects

of various parameters on the base pressures. Such data have been combined in some

cases, as in reference 4 3 and used successfully to predict missile base pressures.

The present investigation was performed to obtain experimental data on a

missile configuration with and without jet flow and incorporating one, two, three,

four, and six nozzles. In addition, skirts of various types and lengths over the

base of the model were investigated. The tests were performed at Mach numbers

of 2.30, 2.95, 4.00, and 4.65 at angles of attack and sideslip of 0°.

SYMBOLS

p - p_

Cp average pressure coefficient,
q_

D model diameter, in.

L skirt length, measured from model base plane, in.

M Mach number

p static pressure, ib/sq ft

q dynamic pressure, ib/sq ft

R Reynolds number (based on model diameter)

r radial distance from center of base (fig. 6), in.

x longitudinal distance from end of skirt (fig. 8), in.

meridian angle (fig. 6), deg

Subscripts:

a afterbody

b base

J jet exhaust

free stream



APPARATUS

Wind Tunnel

The tests were conducted in the Langley Unitary Plan wind tunnel. The test
section of the tunnel is 4 by 4 feet in cross section and approximately 7 feet
long. The Machnumbermaybe varied from 2.3 to 4.65 in any desired increment
without tunnel shutdown, By operating an asymmetric sliding block. Further
details of the tunnel maybe obtained from reference 5.

Model

The model was designed to simulate the aft end of a typical rocket booster.
It was cylindrical in shape and had an outside diameter of 4 inches except for
the forward 25 percent of the length which consisted of a conical nose with a
rounded tip. The model was supported by a hollow strut which also served to house
the high-pressure air lines leading to the simulated rocket chamber; the sup-
porting strut also housed the pressure tubes from the pressure orifices to the
Scanivalves located outside the tunnel. The general arrangement of the model and
the model support system are shownin figure i and a photograph is shownin fig-
ure 2. Details of the model are shownin figure 3 and model photographs are
shownin figure 4.

The configuration was varied by meansof an interchangeable base which
allowed the use of bases having one, two, threej four, and six nozzles (desig-
nated NI, N2, N3, N4, and N6). Details and a photograph of the nozzle bases are
shownin figures 5 and 6. The nozzles were designed to have equal total throat
areas, fixed location of the throat-area plane, and a constant nozzle-exit angle
of i0 °. The nozzle area ratios were designed to provide an exit Machnumber
of 3.175. The orifices on the base and external surfaces of the nozzles were
located as shownin figure 6.

Provision was also madefor the variation of the skirt geometry at the base
of the model. Solid skirts of approximately 1/4, 3/8, and 1/2 base diameter in
length (designated SI, $2, and $3), a perforated skirt of 3/8 base diameter ($6) ,
and a flared skirt of 1/4 base diameter (SIo) were tested. Details and a photo-
graph of the skirt arrangements are shownin figure 7- Orifice locations for the
skirts are shownin figure 8.

The following table lists the various configurations tested with the nomen-
clature used to indicate each combination of skirt length and numberof nozzles:



Skirt length and type

i D_ solid
L_[

L _ _ D, solid

i
L _ _ D, solid

]
L _ z D, perforated

2

i
L _ _ D, flared

4

SIN I

Number of nozzles

SIN 2

3

SIN 3

s# 3

S3N 3

S6N 3

4

SIN 4

.... SIoN 4

6

SIN 6

Instrumentation and Accuracy

Pressure measurements on the afterbody and on the base of the model were made

by connecting the orifices to scanning pressure valves (Scanivalves). Five

Scanivalvesj with 5-pound-per-square-inch transducers, were used to reduce the

required scanning time. The jet-exit pressures were measured by four individual

25-pound-per-square-inch transducers. The transducer outputs were digitized and

punched into cards for machine calculation of the pressure coefficient (Cp). The

free-stream and stagnation pressures were measured on precision mercury manometers,

accurate to within 0.5 pound per square foot.

The maximum deviation of the free-stream Mach number in the range covered by

these tests is ±0.05. The accuracy of the quantity Cp is estimated to be
within ±0.015.

TESTS

With the angle of attack and angle of sideslip of the model set at 0° pres-

sure coefficients were obtained for the following test conditions:



Test conditions

2.3ol

R

i

0.50 x lO6
i

2.9510.6o x 106

4.OOLO.73 x io 6
i

4.651o.9i x io6

_oo_

ib/sq ft

341

361

pj/P 
0 to 26

0 to 40

0 to 8032O

313 0 to ii0

Configuration

S1N1 S1N2 S1N31S2N 3 S3N 3 S6N 3 SlN4 SloN4 S1N6

x x x I X_L--ix x x
_---L

X - X I X - I - X X X

__ i p

i I
X X X I X - - X X X

• X X X I X X X X X -

L

In these tests dry, high-pressure air at a stagnation temperature of approxi-

imately 700 F was used for jet simulation. During the test, pressures at each of

the orifices shown in figures 6 and 8 were measured individually; however, the

pressure coefficients presented in figures 9 and i0 are the average pressure coef-

ficients for a given station x on the afterbodies, or a constant r on the model

base. Similarly, the nozzle exit pressures are averages obtained from orifices

located 90 ° apart inside the nozzle, O.07 inch from the exit.

RESULTS AND DISCUSSION

Jet Effects on AfterbodyPressure

The effect of jet pressure ratios on afterbody pressures is presented in

figure 9 for all test configurations and Mach numbers. At a Mach number of 2.30

there was little or no effect Qf jet pressure ratios on afterbody pressure coeffi-

cients for any of the test configurations. All pressure coefficients were slightly

negative with the exception of those obtained for the flared-skirt configuration

which had positive pressure coefficients. In general, there were only small dif-

ferences in pressure coefficients at any of the afterbody stations investigated,

although the most rearward orifice indicated slightly greater negative values.

With an increase in Mach number the afterbody pressure coefficients remained

essentially the same as at M = 2.30 for the one- and two-nozzle configurations,

the flared-afterbody configuration, and the other nozzle configurations at the

lower jet pressure ratios. For the cylindirical afterbody configurations with

more than two nozzles, however, an increase in Jet pressure ratio at higher Mach

numbers led to an increase in pressure coefficients on the rearmost part of the

afterbody. For example, at M = 4.65, configuration S3N 3 has positive pressure

coefficients for the rearmost orifice location at jet pressure ratios larger than

about 40 (fig. 9(d)). The rearmost orifices on the model were located only

0.07 inch from the end of the skirt and for that reason were subjected to greater

influence of the base pressure than other orifices. As a result, low base pres-

sures led to a reduction in pressures near the end of a skirt and, conversely,

high base pressures led to an increase in pressures.
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Jet Effects on Base Pressure

Base pressure coefficients are presented in figure i0 as a function of jet-

to free-stream static pressure ratios for the configurations and the test Mach

numbers. In most instances the lowest values of pj/p_ in figures 9 and lO cor-

respond to jet-off condition. The general trends in the variation of base pres-

sure coefficients with pj/p_ are similar to those obtained in the previous

investigations (refs. 6 to 14); that is 3 the most negative values of base pressure

coefficients were obtained at the lower Jet- to free-stream pressure ratios and

there was a consistent increase in base pressure as pj/p_ was increased.

At a Mach number of 2.30 for the one-, two-, and six-nozzle configurations,

the base-pressure distribution on the base was nearly uniform and a slight

increase in the slope of Cp, b as a function of pj/p_ occurred with increase

in number of nozzles (fig. 10(a)). This is believed to be primarily the result of

an increase in the effective Jet-to-base area ratio. For the three- and four-

nozzle configurations, differences in Cp, b for various orifice locations were

appreciable, particularly at higher values of jet pressure ratio. For each of

these nozzle arrangementsj the highest values of Cp, b were obtained at the cen-

ter of the base, with the four-uozzle configuration having the greatest values at

this location. The high pressures were caused by a reversed flow into the base

region, a phenomenon that takes place at high jet pressure ratios for clustered

nozzles. This phenomenon occurs when an interaction of the jets results in high

local pressures which feed back into the base region; a more detailed explanation

of this phenomenon is given in reference 15. From the radial pressure distribu-

tion shown in figure ll, it is apparent that for three- and four-nozzle configura-

tions the flow proceeds radially outward between the nozzles from the high pres-

sure region at the center. Although similar effects would be expected for the

six-nozzle configuration, this result could not be established from the available

pressure distributions. It could be stated that whenever the nozzle arrangement

encloses portions of the base area, reverse flow into these regions will tend to

occur when pressure ratios become high enough to cause Jet boundary interaction.

Similar effects to those noted at Mach number 2.30 were found at other Mach num-

bers (figs. 10(b) to (d)).

There appears to be little or no effect of the skirt length (such as the

lengths used for these tests) on the base pressure coefficient. However, flaring

the afterbody leads to a significant reduction in base pressure as compared with

the cylindrical afterbody at all Mach numbers for a given jet pressure ratio.

Data obtained at M = 4.65 for the perforated-skirt configuration also showed

little or no effect of the perforations on base pressure coefficients (fig. lO(d)).

Figure 12 shows some typical flow fields for the multinozzle configurations

for the test Mach numbers and at several Jet pressure ratios.
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SUMMARY OF RESULTS

Tests of a missile configuration to determine the effects of the number of

nozzles, the skirt geometry, and the Jet pressure ratio on afterbody and base

pressure coefficients at Mach numbers from 2.30 to 4.65 indicated the following

results:

i. For one- and two-nozzle configurations, or a flared-afterbody configura-

tion, there was little effect of the Jet pressure ratio on the afterbody pressure

coefficient at any of the test Mach numbers. Cylindrical afterbody configura-

tions with more than two nozzleS, however, led to increases in pressure coeffi-

cients over the rearmost part of the afterbody at the higher jet pressure ratios.

2. Nozzle arrangements enclosing portions of the base area led to large

positive values of base pressure coefficient at high values of jet pressure ratio.

These large positive values were caused by Jet boundary interaction, which forced

exhaust gases into the base and thence radially outward between the nozzles.

3. Skirt length or perforation, such as used for these tests, had little or

no effect on the base pressure coefficient, although flaring the skirt resulted

in reduced base pressures at all test Mach numbers for a given Jet pressure ratio.

Langley Research Center 3

National Aeronautics and S_ace Administration 3

Langley Station, Hampton, Va., September 4, 1963.
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S i nglemnozzle conf iguration

L-60-867

Multinozzle configuration

Figure 4.- Test model. I_0-870
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_.._ O Single-nozzle configuration

r,

F

t a-_----_-------t-- A B C

Number of nozzles

One Nozzle

Two Nozzles

Three Nozzles

Four Nozzles

Six NozzIes

A

0.781

.552

.451

.391

.319

Dimensions, in.

1.746I 2"°°°i2"45313"°°°/°'8_-/_°°°
1.23311.4131z.T3112.278/ .500/ "96313"8°°1 ._so
l'°°91z'157tz'41_lZ'964/ .500/ "7°613"80°1 .862
•87311"°°°t1"22611"773/ .500/ "8°°13"8°°1 .845

(a) Nozzle drawing.

Figure 5.- Drawing and photograph of nozzles.

To%al
throat
area,
sq in.

0.48
.48
.¢8
.48

.48
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N1

i _, 4, deg ]
Conf lgurl_ ion j ,.. 45 I 13_ ; 225 I 315 t

------ / 0.90 x ! x _ x x

I x x x

0.43

0.64

I 085

r 1.2e /

b 5_ N°zzle extePnal-surfaoe orffTce

Nozzle external -auPflce or I f ico

0.5[_ Nozzle external-surface orFfTce

T r, , deg ]
Configurl_ In. _0 J 135j 180 225 300 315

_hr;e nozzles 0,871,310'43__

N4

Configurition
Four nozzles

0 j 45 90 135 180 225 270 315

x

0.54 x

1.22 x x

1.53 x x x x

1.79 x x I x x
i

2.30" x x _ x x

3.00" i x x I x x

* Flared skirt configuration only

N6 ! Six nozzles O,41
D,BO x

1.25 x x x x

[.79 x

Figure 6.- Location of base-pressure orifices. (Dimensions are in inches. )
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I I

ooo,ioo_,,oo_ I_ _-_
S 1 0.950

S 2 1.425

S3 and S 4 1.800 Configurations S
l'

F_

___*,FFq-_--
U__J_

E_

1 -_o.80
--lo. 70_-_

_°
Section A'-A (S 6

S2 , S3, and S6

__L

---T-
o

0

only)

O0

Configuration S10

(a) Detailed drawing of skirts.

Figure 7.= Drawing and photograph of skirts. (Dimensions are in inches.)
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Configurations S1,S2, and S 3

EEE3
o o

E3

o

Configuration S6

Conf iguration Slo

Configuration

S 1 , L = }D

S 2, L = _D

S 3 and $6, L =

SlO, L = ¼D,

D

flared

0.070

.070

.070

.070

x, in.

2.70

I .40

i. 40

4.70

3.20

3.70

5.20

5.70

Figure 8.- Location of static-pressure orifices on afterbody.
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Orifice

location,x
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1.40
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iiH
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Figure 9.- Jet effects on afterbody pressures.
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Figure 9.- Continued.
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Orifice

1oca t ion, x

0 0.07

1.60

0 2.70

A 3.20

h _.70

5.20

0 10 20 30 40 50 60 70 80

Jet-to free-stream static pressure ra%io,pj/p_

Figure 9.- Continued.
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